
Emacs as Design Pattern Learning

Greta Goetz

November 13, 2021

Contents
1 Who is this talk for? 1

2 What are design patterns? 2

3 Why Emacs and design pattern learning? 2

4 Why do we care? 2

5 Why complex assemblages matter 2

6 Mind map to show compex assemblages of Emacs 3

7 Emacs as a design pattern framework 3

8 Personal customizations 3

9 Using - basic - Emacs design patterns for learning 3

10 Social capacities 4

11 Emacs community design pattern: Cognitive democracy 4

12 The Emacs center of centers: expanding, relational, free 4

13 Thank you 5

1 Who is this talk for?
• People interested in thinking about Emacs as a tool sophisticated enough

to cater to complex assemblage of tasks, people, activities/outcomes, tools
(Markauskaite & Goodyear)

• Learning to learn how to continuously iterate knowledge to changing, com-
plex contexts

• Some software oversimplifies. Emacs both helps users implemenet design
pattern learning that can cope with complexity and models complex design
pattern learning

1



2 What are design patterns?
• cf. Alexander - design theory in programming (Gabriel) and pedagogy

(Goodyear & Retalis)

• Patterns of micro solutions combining method + artefact

• Macro solutions of patterns viewed together (cf. Alexander)

• Allows specialization, customization, extension and reuse - Gabriel

• Especially if we’re seeking to deal with complexity, it helps extend assem-
blage of learning components without building from scratch (cf. Goodyear
& Retalis 2010)

• Human-centered

3 Why Emacs and design pattern learning?
• Extensibility: Free core (e-quality of opportunity to co-create knowledge

cf. Beaty et al.: learning for all)

• Use for different purposes - true of even basic functionalities (language
evaluation, buffer cycling, key strokes/basic commands, Org tree outlines,
header args/code blocks) support easy re-presentation of material

– Successful center (feature of design pattern): is made of a center
surrounded by a boundary which is itself made of centers - Alexander
in Gabriel

4 Why do we care?
• No pre-fabricated software app silos with limited extensions, stranding

work materials

• Assumptions: in UX design and learning. Be your own person(a)

• Practical use can make non-programmers programmers: creative per-
sons as producers and users (Illich), contribute to the evolution of rules
(Stiegler)

• Personal toolkit (Stallman)

• Develops heuristics - extensible beyond Emacs

5 Why complex assemblages matter
• Not poor, reductionist contextualization (a range of languages can be

evaluated on top of Lisp interpreter)

• (Impoverished languages flatten communication)

• Learning to contextualize: First step in learning to learn (Trocmé-Fabre)

2



6 Mind map to show compex assemblages of Emacs
• (cf. Tony Buzan in Trocmé-Fabre)

• Core; relational codes; key words, cycling (easy key strokes, commands) to
bring out ideas (buffer visibility, cycling), branches at periphery, in shared
personal configurations

• Frontierless heuristic schema

• A free system that extends following our paths of desire (inits, packages)
- but shared tool (Illich) - core at the middle

7 Emacs as a design pattern framework
• Operates through co-constructed knowledge of e-quality (cf. Beaty et al.)

• cf. Gabriel. The "being" of free software: each subsystem (exhibiting
behavior in response to requests) - e.g. Magit - is a center, but being part
of Emacs, we have a system made up of other systems: "communicating
components that work together to provide a comprehensive set of capa-
bilities that can be customized, specialized and extended to provide more
or slightly different capabilities"

8 Personal customizations
• Emacs as general computing

• ’Wise’ use of computers (Crichton)

• Everyone’s Emacs is their own

• Can be used easily by anybody as often or seldom as they want for the
purpose chosen, shaped according to taste (Illich)

9 Using - basic - Emacs design patterns for learn-
ing

• (cf. Guo et al.)

• Modularity (e.g. Org tree outlines, header arguments) that supports re-
presentation to meet specifications of changing contexts (shorter lecture
segments, different deliveries)

• Topoi accessibility

3



• Helped by languages (e.g. PlantUML), packages (org-ref), workflow pos-
sibilities (Sacha’s completing sketches)

• Can learn how to learn by following the traces left by others in community

10 Social capacities
• Grammar of interaction (Gaume in Andler & Guerry)

• Co-individuation (meaning known and shared by other individuals, Stiegler)

• Without the social milieu, the technical milieu inevitably becomes a neg-
ative externality (knowledge automatization is a closed, self-referential
system that turns users into servants) (Stiegler)

• Take care of neighbors & excel at using the best available tool (cf. Illich)

– The shared core evolves (just like we configure/program while using):
as a model of learning

11 Emacs community design pattern: Cognitive
democracy

• First, there is a community (e.g. Sacha, PlanetEmacsLife)

• Different/competing views

• Morin: nourished by regulated antagonisms

• Gabriel’s centers of centers, the "being" of free software allows this range
of extensibility

12 The Emacs center of centers: expanding, re-
lational, free

• Only in some systems does the "being" emerge, the framework that can be
used and reused and which gives systems and objects their spirit - Gabriel

• Values the value of the freedom to create, use, and share (Stiegler) - com-
munity spirit

• Autonomous designer mindset: design pattern iteration (Gabriel)

• Not ’flattened’: permits ongoing learning, reassembling contexts; adapt-
able design pattern extensibility

• Helps create circumstances where learning is coherent with what is valued
in the rest of life: pleasure, growth, transformation (Goodyear et al.)

4



13 Thank you
Thank you to the developers, maintainers, contributors, and community for
championing our freedom to co-individuate complex design patterns the way we
want to, so we, too, can leave original traces - if we want to!

5


	Who is this talk for?
	What are design patterns?
	Why Emacs and design pattern learning?
	Why do we care?
	Why complex assemblages matter
	Mind map to show compex assemblages of Emacs
	Emacs as a design pattern framework
	Personal customizations
	Using - basic - Emacs design patterns for learning
	Social capacities
	Emacs community design pattern: Cognitive democracy
	The Emacs center of centers: expanding, relational, free
	Thank you

