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1 Who is this talk for?
• People interested in thinking about Emacs as a tool sophisticated enough

to cater to complex assemblage of tasks, people, activities/outcomes, tools
(Markauskaite & Goodyear)

• Learning to learn how to continuously iterate knowledge to changing, com-
plex contexts

• Some software oversimplifies. Emacs both helps users implemenet design
pattern learning that can cope with complexity and models complex design
pattern learning
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2 What are design patterns?
• cf. Alexander - design theory in programming (Gabriel) and pedagogy

(Goodyear & Retalis)

• Patterns of micro solutions combining method + artefact

• Macro solutions of patterns viewed together (cf. Alexander)

• Allows specialization, customization, extension and reuse - Gabriel

• Especially if we’re seeking to deal with complexity, it helps extend assem-
blage of learning components without building from scratch (cf. Goodyear
& Retalis 2010)

• Human-centered

3 Why Emacs and design pattern learning?
• Extensibility: Free core (e-quality of opportunity to co-create knowledge

cf. Beaty et al.: learning for all)

• Use for different purposes - true of even basic functionalities (language
evaluation, buffer cycling, key strokes/basic commands, Org tree outlines,
header args/code blocks) support easy re-presentation of material

– Successful center (feature of design pattern): is made of a center
surrounded by a boundary which is itself made of centers - Alexander
in Gabriel

4 Why do we care?
• No pre-fabricated software app silos with limited extensions, stranding

work materials

• Assumptions: in UX design and learning. Be your own person(a)

• Practical use can make non-programmers programmers: creative per-
sons as producers and users (Illich), contribute to the evolution of rules
(Stiegler)

• Personal toolkit (Stallman)

• Develops heuristics - extensible beyond Emacs

5 Why complex assemblages matter
• Not poor, reductionist contextualization (a range of languages can be

evaluated on top of Lisp interpreter)

• (Impoverished languages flatten communication)

• Learning to contextualize: First step in learning to learn (Trocmé-Fabre)
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6 Mind map to show compex assemblages of Emacs
• (cf. Tony Buzan in Trocmé-Fabre)

• Core; relational codes; key words, cycling (easy key strokes, commands) to
bring out ideas (buffer visibility, cycling), branches at periphery, in shared
personal configurations

• Frontierless heuristic schema

• A free system that extends following our paths of desire (inits, packages)
- but shared tool (Illich) - core at the middle

7 Emacs as a design pattern framework
• Operates through co-constructed knowledge of e-quality (cf. Beaty et al.)

• cf. Gabriel. The "being" of free software: each subsystem (exhibiting
behavior in response to requests) - e.g. Magit - is a center, but being part
of Emacs, we have a system made up of other systems: "communicating
components that work together to provide a comprehensive set of capa-
bilities that can be customized, specialized and extended to provide more
or slightly different capabilities"

8 Personal customizations
• Emacs as general computing

• ’Wise’ use of computers (Crichton)

• Everyone’s Emacs is their own

• Can be used easily by anybody as often or seldom as they want for the
purpose chosen, shaped according to taste (Illich)

9 Using - basic - Emacs design patterns for learn-
ing

• (cf. Guo et al.)

• Modularity (e.g. Org tree outlines, header arguments) that supports re-
presentation to meet specifications of changing contexts (shorter lecture
segments, different deliveries)

• Topoi accessibility
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• Helped by languages (e.g. PlantUML), packages (org-ref), workflow pos-
sibilities (Sacha’s completing sketches)

• Can learn how to learn by following the traces left by others in community

10 Social capacities
• Grammar of interaction (Gaume in Andler & Guerry)

• Co-individuation (meaning known and shared by other individuals, Stiegler)

• Without the social milieu, the technical milieu inevitably becomes a neg-
ative externality (knowledge automatization is a closed, self-referential
system that turns users into servants) (Stiegler)

• Take care of neighbors & excel at using the best available tool (cf. Illich)

– The shared core evolves (just like we configure/program while using):
as a model of learning

11 Emacs community design pattern: Cognitive
democracy

• First, there is a community (e.g. Sacha, PlanetEmacsLife)

• Different/competing views

• Morin: nourished by regulated antagonisms

• Gabriel’s centers of centers, the "being" of free software allows this range
of extensibility

12 The Emacs center of centers: expanding, re-
lational, free

• Only in some systems does the "being" emerge, the framework that can be
used and reused and which gives systems and objects their spirit - Gabriel

• Values the value of the freedom to create, use, and share (Stiegler) - com-
munity spirit

• Autonomous designer mindset: design pattern iteration (Gabriel)

• Not ’flattened’: permits ongoing learning, reassembling contexts; adapt-
able design pattern extensibility

• Helps create circumstances where learning is coherent with what is valued
in the rest of life: pleasure, growth, transformation (Goodyear et al.)
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13 Thank you
Thank you to the developers, maintainers, contributors, and community for
championing our freedom to co-individuate complex design patterns the way we
want to, so we, too, can leave original traces - if we want to!
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