
Writing a Language Server in OCaml for Emacs,
Fun, and Profit

Austin Theriault1

<2023-12-06 Wed>

1austin@semgrep.com

Outline

1 Introduction

2 LSP Overview

3 Emacs + LSP and the future

4 The Technical Part (LSP Deep Dive)

5 Supporting a LS through LSP mode in Emacs

6 Conclusion

1 Introduction

2 LSP Overview

3 Emacs + LSP and the future

4 The Technical Part (LSP Deep Dive)

5 Supporting a LS through LSP mode in Emacs

6 Conclusion

Who am I

• Software engineer @ Semgrep
• I work on our editor integrations
• I love working on programming languages, editors,

cryptography

What is Semgrep

• Semgrep’s core
product is a SAST
tool

• Can think of it as a
security linter

• Supports 30+
languages

• Lots of customers, all
using different IDEs

SAST
Static Application Security Testing

Demo

Product Purpose
Show security bugs as early as possible in the development cycle

What is Semgrep

• Semgrep’s core
product is a SAST
tool

• Can think of it as a
security linter

• Supports 30+
languages

• Lots of customers, all
using different IDEs

SAST
Static Application Security Testing

Demo

Product Purpose
Show security bugs as early as possible in the development cycle

How do we show security bugs early?

In the editor!

Goals
• Provide a similar user experience to normal language checking
• Abstract away editing and language features for editors to one

code base

How do we show security bugs early?

In the editor!

Goals
• Provide a similar user experience to normal language checking
• Abstract away editing and language features for editors to one

code base

1 Introduction

2 LSP Overview

3 Emacs + LSP and the future

4 The Technical Part (LSP Deep Dive)

5 Supporting a LS through LSP mode in Emacs

6 Conclusion

What is the Language Server Protocol

Language Server Protocol (LSP) Defines all the ways an editor can
interact with a LS

Language Server (LS) Program that provides language tooling
(syntax errors, completion, refactoring etc.)

Language Client The development tool/editor etc. handles
documents, user interaction etc. (i.e. Emacs)

What is the Language Server Protocol

Language Server Protocol (LSP) Defines all the ways an editor can
interact with a LS

Language Server (LS) Program that provides language tooling
(syntax errors, completion, refactoring etc.)

Language Client The development tool/editor etc. handles
documents, user interaction etc. (i.e. Emacs)

What is the Language Server Protocol

Language Server Protocol (LSP) Defines all the ways an editor can
interact with a LS

Language Server (LS) Program that provides language tooling
(syntax errors, completion, refactoring etc.)

Language Client The development tool/editor etc. handles
documents, user interaction etc. (i.e. Emacs)

Case study: Rust Analyzer

• Rust Analyzer: A language
server for the Rust language

• Rust takes a long time to
compile

• Rust Analyzer provides
feedback instantly

Provides the editor
• Compiler errors/warnings
• Potential fixes
• Completion
• Type signatures
• Auto imports
• View dependency graph
• Run code/tests
• Refactoring
• Much much more

TL;DR
Developing Rust with Rust Analyzer is a pleasure, and makes
dealing with advanced language features significantly easier

Case study: Rust Analyzer

• Rust Analyzer: A language
server for the Rust language

• Rust takes a long time to
compile

• Rust Analyzer provides
feedback instantly

Provides the editor
• Compiler errors/warnings
• Potential fixes
• Completion
• Type signatures
• Auto imports
• View dependency graph
• Run code/tests
• Refactoring
• Much much more

TL;DR
Developing Rust with Rust Analyzer is a pleasure, and makes
dealing with advanced language features significantly easier

Case study: Rust Analyzer

• Rust Analyzer: A language
server for the Rust language

• Rust takes a long time to
compile

• Rust Analyzer provides
feedback instantly

Provides the editor
• Compiler errors/warnings
• Potential fixes
• Completion
• Type signatures
• Auto imports
• View dependency graph
• Run code/tests
• Refactoring
• Much much more

TL;DR
Developing Rust with Rust Analyzer is a pleasure, and makes
dealing with advanced language features significantly easier

Rust Analylzer in action

Why is this useful?

User perspective
• Same experience across editors
• Can easily setup and use LS’ made for other editors, if

developers don’t support a certain editor
• Performance is not dependent on editor
• Bug fixes, updates, etc. all come out at the same time

Developer perspective
• Adding new editors is quick and easy
• Only need one mental model
• Write tests for the LS, not for the editor

Why is this useful?

User perspective
• Same experience across editors
• Can easily setup and use LS’ made for other editors, if

developers don’t support a certain editor
• Performance is not dependent on editor
• Bug fixes, updates, etc. all come out at the same time

Developer perspective
• Adding new editors is quick and easy
• Only need one mental model
• Write tests for the LS, not for the editor

1 Introduction

2 LSP Overview

3 Emacs + LSP and the future

4 The Technical Part (LSP Deep Dive)

5 Supporting a LS through LSP mode in Emacs

6 Conclusion

So what about Emacs?

• Gets to benefit from work put into other editors

• Language tooling, the CPU intensive part of editors, can be
written in something else

• Lisp is fast, but not that fast
• lsp-mode, an LSP client, is commonly included in popular

Emacs distributions (Spacemacs, Doom Emacs, etc.)
• Emacs 29 includes eglot-mode built-in, a LSP client

• Lighter weight than lsp-mode

Some supported languages
C/C++/C#, Python, Rust, Type/Javascript, Dockerfile, Elixir, D,
Java, Haskell, Ruff, Semgrep, and more

So what about Emacs?

• Gets to benefit from work put into other editors
• Language tooling, the CPU intensive part of editors, can be

written in something else
• Lisp is fast, but not that fast

• lsp-mode, an LSP client, is commonly included in popular
Emacs distributions (Spacemacs, Doom Emacs, etc.)

• Emacs 29 includes eglot-mode built-in, a LSP client
• Lighter weight than lsp-mode

Some supported languages
C/C++/C#, Python, Rust, Type/Javascript, Dockerfile, Elixir, D,
Java, Haskell, Ruff, Semgrep, and more

So what about Emacs?

• Gets to benefit from work put into other editors
• Language tooling, the CPU intensive part of editors, can be

written in something else
• Lisp is fast, but not that fast

• lsp-mode, an LSP client, is commonly included in popular
Emacs distributions (Spacemacs, Doom Emacs, etc.)

• Emacs 29 includes eglot-mode built-in, a LSP client
• Lighter weight than lsp-mode

Some supported languages
C/C++/C#, Python, Rust, Type/Javascript, Dockerfile, Elixir, D,
Java, Haskell, Ruff, Semgrep, and more

So what about Emacs?

• Gets to benefit from work put into other editors
• Language tooling, the CPU intensive part of editors, can be

written in something else
• Lisp is fast, but not that fast

• lsp-mode, an LSP client, is commonly included in popular
Emacs distributions (Spacemacs, Doom Emacs, etc.)

• Emacs 29 includes eglot-mode built-in, a LSP client
• Lighter weight than lsp-mode

Some supported languages
C/C++/C#, Python, Rust, Type/Javascript, Dockerfile, Elixir, D,
Java, Haskell, Ruff, Semgrep, and more

So what about Emacs?

• Gets to benefit from work put into other editors
• Language tooling, the CPU intensive part of editors, can be

written in something else
• Lisp is fast, but not that fast

• lsp-mode, an LSP client, is commonly included in popular
Emacs distributions (Spacemacs, Doom Emacs, etc.)

• Emacs 29 includes eglot-mode built-in, a LSP client
• Lighter weight than lsp-mode

Some supported languages
C/C++/C#, Python, Rust, Type/Javascript, Dockerfile, Elixir, D,
Java, Haskell, Ruff, Semgrep, and more

1 Introduction

2 LSP Overview

3 Emacs + LSP and the future

4 The Technical Part (LSP Deep Dive)

5 Supporting a LS through LSP mode in Emacs

6 Conclusion

Brief communication overview

JSONRPC A JSON based remote procedure call protocol (think
http but JSON)
• A way for two programs to communicate
• Transport platform agnostic (can be stdin/out,

sockets etc.)

Request message that requires a response from the other party
Notification message that does not expect a response

Brief communication overview

JSONRPC A JSON based remote procedure call protocol (think
http but JSON)
• A way for two programs to communicate
• Transport platform agnostic (can be stdin/out,

sockets etc.)

Request message that requires a response from the other party

Notification message that does not expect a response

Brief communication overview

JSONRPC A JSON based remote procedure call protocol (think
http but JSON)
• A way for two programs to communicate
• Transport platform agnostic (can be stdin/out,

sockets etc.)

Request message that requires a response from the other party
Notification message that does not expect a response

Example Request

{
"jsonrpc": "2.0",
"id" : 1,
"method": "textDocument/definition",
"params": {

"textDocument": {
"uri": "file:///p%3A/mseng/VSCode/Playgrounds/cpp/use.cpp"

},
"position": {

"line": 3,
"character": 12

}
}

}

Example Response

{
"jsonrpc": "2.0",
"id": 1,
"result": {

"uri": "file:///p%3A/mseng/VSCode/Playgrounds/cpp/provide.cpp",
"range": {

"start": {
"line": 0,
"character": 4

},
"end": {

"line": 0,
"character": 11

}
}

}
}

LSP Capabilities

• Almost all of the LSP is opt-in
• Server and client communicate on

what parts of the protocol they
both support

• Custom capabilities are possible too
- just define a custom JSONRPC
method

Some relevant
capabilities

• Open/Close file
• Diagnostics
• Code Actions
• Completion
• Other actions

• Hover
• Signature
• Symbols

Custom Capabilities
• Example: Rust Analyzer has “Structural Search and Replace”

request
• If you choose to go down this route, you must implement this

custom capability in every client

LSP Capabilities

• Almost all of the LSP is opt-in
• Server and client communicate on

what parts of the protocol they
both support

• Custom capabilities are possible too
- just define a custom JSONRPC
method

Some relevant
capabilities

• Open/Close file
• Diagnostics
• Code Actions
• Completion
• Other actions

• Hover
• Signature
• Symbols

Custom Capabilities
• Example: Rust Analyzer has “Structural Search and Replace”

request
• If you choose to go down this route, you must implement this

custom capability in every client

LSP Capabilities

• Almost all of the LSP is opt-in
• Server and client communicate on

what parts of the protocol they
both support

• Custom capabilities are possible too
- just define a custom JSONRPC
method

Some relevant
capabilities

• Open/Close file
• Diagnostics
• Code Actions
• Completion
• Other actions

• Hover
• Signature
• Symbols

Custom Capabilities
• Example: Rust Analyzer has “Structural Search and Replace”

request
• If you choose to go down this route, you must implement this

custom capability in every client

Tips on writing a LS

• I wrote Semgrep’s in OCaml since our codebase was almost all
OCaml already

• Structure is similar to a REST server (i.e. a bunch of
independent endpoints)

• Would recommend Typescript or Rust depending on level of
performance desired

• Typescript has a lot of support, and documentation
• Rust is fast, but is going to take a lot more effort

• The hard part is not LSP, but the actual logic
• If you want to do analysis on code, you’ll need some sort of

parser, a way to get errors etc.
• If you’re adapting an existing language tool, this is much easier

Tips on writing a LS

• I wrote Semgrep’s in OCaml since our codebase was almost all
OCaml already

• Structure is similar to a REST server (i.e. a bunch of
independent endpoints)

• Would recommend Typescript or Rust depending on level of
performance desired

• Typescript has a lot of support, and documentation
• Rust is fast, but is going to take a lot more effort

• The hard part is not LSP, but the actual logic
• If you want to do analysis on code, you’ll need some sort of

parser, a way to get errors etc.
• If you’re adapting an existing language tool, this is much easier

Tips on writing a LS

• I wrote Semgrep’s in OCaml since our codebase was almost all
OCaml already

• Structure is similar to a REST server (i.e. a bunch of
independent endpoints)

• Would recommend Typescript or Rust depending on level of
performance desired

• Typescript has a lot of support, and documentation
• Rust is fast, but is going to take a lot more effort

• The hard part is not LSP, but the actual logic
• If you want to do analysis on code, you’ll need some sort of

parser, a way to get errors etc.
• If you’re adapting an existing language tool, this is much easier

Tips on writing a LS

• I wrote Semgrep’s in OCaml since our codebase was almost all
OCaml already

• Structure is similar to a REST server (i.e. a bunch of
independent endpoints)

• Would recommend Typescript or Rust depending on level of
performance desired

• Typescript has a lot of support, and documentation
• Rust is fast, but is going to take a lot more effort

• The hard part is not LSP, but the actual logic

• If you want to do analysis on code, you’ll need some sort of
parser, a way to get errors etc.

• If you’re adapting an existing language tool, this is much easier

Tips on writing a LS

• I wrote Semgrep’s in OCaml since our codebase was almost all
OCaml already

• Structure is similar to a REST server (i.e. a bunch of
independent endpoints)

• Would recommend Typescript or Rust depending on level of
performance desired

• Typescript has a lot of support, and documentation
• Rust is fast, but is going to take a lot more effort

• The hard part is not LSP, but the actual logic
• If you want to do analysis on code, you’ll need some sort of

parser, a way to get errors etc.

• If you’re adapting an existing language tool, this is much easier

Tips on writing a LS

• I wrote Semgrep’s in OCaml since our codebase was almost all
OCaml already

• Structure is similar to a REST server (i.e. a bunch of
independent endpoints)

• Would recommend Typescript or Rust depending on level of
performance desired

• Typescript has a lot of support, and documentation
• Rust is fast, but is going to take a lot more effort

• The hard part is not LSP, but the actual logic
• If you want to do analysis on code, you’ll need some sort of

parser, a way to get errors etc.
• If you’re adapting an existing language tool, this is much easier

1 Introduction

2 LSP Overview

3 Emacs + LSP and the future

4 The Technical Part (LSP Deep Dive)

5 Supporting a LS through LSP mode in Emacs

6 Conclusion

Supporting a LS through LSP mode in
Emacs

• How to write a client for a Language Server in Emacs
• There’s the official lsp-mode repository on Github w/ many

clients
• These are available to anyone who installs lsp-mode
• Alternatively, one can create a separate package altogether

(but we won’t focus on this)
• Steps:

1 A simple .el file that contains the logic
2 An entry into the list of clients
3 Documentation!

Create a client

;; lsp-mode/clients/lsp-<client-name>.el
;;
;; Use lsp-mode library
(require 'lsp-mode)

(lsp-register-client
(make-lsp-client
:new-connection (lsp-stdio-connection '("<server-executable>"))
:activation-fn (lsp-activate-on "<language-name>")
:server-id 'language-server-name))

(lsp-consistency-check 'language-server-name)
(provide 'lsp-client-name)

Add to list of client packages

;; lsp-mode/lsp-mode.el
;; a bunch of lisp
(defcustom lsp-client-packages

'(
;; A bunch of clients
lsp-client-name
;; more clients
)

"List of the clients to be automatically required."
:group 'lsp-mode
:type '(repeat symbol))

;; more lisp

Add to list of clients

// lsp-mode/docs/lsp-clients.json
{

// other clients...
"name": "client name",
"full-name": "full client name",
"server-name": "language-server-name",
"server-url": "<url>",
"installation": "<installation command>",
"debugger": "Yes or Not available"

}

Add documentation!

lsp-mode/mkdocs.yml
Documentation!
Other client pages
- Client Name: page/lsp-<client-name>.md
More client pages

Adding commands and custom capabilities

;; Custom notification
(defun client-notify-command (params)
"Documentation"
(interactive)
(lsp-notify "method" params))

;; Custom request
(defun client-request-command (params)
"Documentation"
(interactive)
(lsp-request-async "method" params

(lambda (result)
(do-thing result))))

;; Previous content of lsp-client-name.el

1 Introduction

2 LSP Overview

3 Emacs + LSP and the future

4 The Technical Part (LSP Deep Dive)

5 Supporting a LS through LSP mode in Emacs

6 Conclusion

Thanks for listening

Resources
• Semgrep: We’re hiring!
• LSP Specification
• lsp-mode + docs
• Rust Analyzer
• Long Video Tutorial

Q&A Time

https://semgrep.dev/
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/
https://github.com/emacs-lsp/lsp-mode
https://emacs-lsp.github.io/lsp-mode/page/adding-new-language/
https://rust-analyzer.github.io/
https://www.youtube.com/watch?v=E-NAM9U5JYE&list=PLEoMzSkcN8oNvsrtk_iZSb94krGRofFjN&index=1

	Introduction
	LSP Overview
	Emacs + LSP and the future
	The Technical Part (LSP Deep Dive)
	Supporting a LS through LSP mode in Emacs
	Conclusion

	anm2:
	2.265:
	2.264:
	2.263:
	2.262:
	2.261:
	2.260:
	2.259:
	2.258:
	2.257:
	2.256:
	2.255:
	2.254:
	2.253:
	2.252:
	2.251:
	2.250:
	2.249:
	2.248:
	2.247:
	2.246:
	2.245:
	2.244:
	2.243:
	2.242:
	2.241:
	2.240:
	2.239:
	2.238:
	2.237:
	2.236:
	2.235:
	2.234:
	2.233:
	2.232:
	2.231:
	2.230:
	2.229:
	2.228:
	2.227:
	2.226:
	2.225:
	2.224:
	2.223:
	2.222:
	2.221:
	2.220:
	2.219:
	2.218:
	2.217:
	2.216:
	2.215:
	2.214:
	2.213:
	2.212:
	2.211:
	2.210:
	2.209:
	2.208:
	2.207:
	2.206:
	2.205:
	2.204:
	2.203:
	2.202:
	2.201:
	2.200:
	2.199:
	2.198:
	2.197:
	2.196:
	2.195:
	2.194:
	2.193:
	2.192:
	2.191:
	2.190:
	2.189:
	2.188:
	2.187:
	2.186:
	2.185:
	2.184:
	2.183:
	2.182:
	2.181:
	2.180:
	2.179:
	2.178:
	2.177:
	2.176:
	2.175:
	2.174:
	2.173:
	2.172:
	2.171:
	2.170:
	2.169:
	2.168:
	2.167:
	2.166:
	2.165:
	2.164:
	2.163:
	2.162:
	2.161:
	2.160:
	2.159:
	2.158:
	2.157:
	2.156:
	2.155:
	2.154:
	2.153:
	2.152:
	2.151:
	2.150:
	2.149:
	2.148:
	2.147:
	2.146:
	2.145:
	2.144:
	2.143:
	2.142:
	2.141:
	2.140:
	2.139:
	2.138:
	2.137:
	2.136:
	2.135:
	2.134:
	2.133:
	2.132:
	2.131:
	2.130:
	2.129:
	2.128:
	2.127:
	2.126:
	2.125:
	2.124:
	2.123:
	2.122:
	2.121:
	2.120:
	2.119:
	2.118:
	2.117:
	2.116:
	2.115:
	2.114:
	2.113:
	2.112:
	2.111:
	2.110:
	2.109:
	2.108:
	2.107:
	2.106:
	2.105:
	2.104:
	2.103:
	2.102:
	2.101:
	2.100:
	2.99:
	2.98:
	2.97:
	2.96:
	2.95:
	2.94:
	2.93:
	2.92:
	2.91:
	2.90:
	2.89:
	2.88:
	2.87:
	2.86:
	2.85:
	2.84:
	2.83:
	2.82:
	2.81:
	2.80:
	2.79:
	2.78:
	2.77:
	2.76:
	2.75:
	2.74:
	2.73:
	2.72:
	2.71:
	2.70:
	2.69:
	2.68:
	2.67:
	2.66:
	2.65:
	2.64:
	2.63:
	2.62:
	2.61:
	2.60:
	2.59:
	2.58:
	2.57:
	2.56:
	2.55:
	2.54:
	2.53:
	2.52:
	2.51:
	2.50:
	2.49:
	2.48:
	2.47:
	2.46:
	2.45:
	2.44:
	2.43:
	2.42:
	2.41:
	2.40:
	2.39:
	2.38:
	2.37:
	2.36:
	2.35:
	2.34:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.254:
	1.253:
	1.252:
	1.251:
	1.250:
	1.249:
	1.248:
	1.247:
	1.246:
	1.245:
	1.244:
	1.243:
	1.242:
	1.241:
	1.240:
	1.239:
	1.238:
	1.237:
	1.236:
	1.235:
	1.234:
	1.233:
	1.232:
	1.231:
	1.230:
	1.229:
	1.228:
	1.227:
	1.226:
	1.225:
	1.224:
	1.223:
	1.222:
	1.221:
	1.220:
	1.219:
	1.218:
	1.217:
	1.216:
	1.215:
	1.214:
	1.213:
	1.212:
	1.211:
	1.210:
	1.209:
	1.208:
	1.207:
	1.206:
	1.205:
	1.204:
	1.203:
	1.202:
	1.201:
	1.200:
	1.199:
	1.198:
	1.197:
	1.196:
	1.195:
	1.194:
	1.193:
	1.192:
	1.191:
	1.190:
	1.189:
	1.188:
	1.187:
	1.186:
	1.185:
	1.184:
	1.183:
	1.182:
	1.181:
	1.180:
	1.179:
	1.178:
	1.177:
	1.176:
	1.175:
	1.174:
	1.173:
	1.172:
	1.171:
	1.170:
	1.169:
	1.168:
	1.167:
	1.166:
	1.165:
	1.164:
	1.163:
	1.162:
	1.161:
	1.160:
	1.159:
	1.158:
	1.157:
	1.156:
	1.155:
	1.154:
	1.153:
	1.152:
	1.151:
	1.150:
	1.149:
	1.148:
	1.147:
	1.146:
	1.145:
	1.144:
	1.143:
	1.142:
	1.141:
	1.140:
	1.139:
	1.138:
	1.137:
	1.136:
	1.135:
	1.134:
	1.133:
	1.132:
	1.131:
	1.130:
	1.129:
	1.128:
	1.127:
	1.126:
	1.125:
	1.124:
	1.123:
	1.122:
	1.121:
	1.120:
	1.119:
	1.118:
	1.117:
	1.116:
	1.115:
	1.114:
	1.113:
	1.112:
	1.111:
	1.110:
	1.109:
	1.108:
	1.107:
	1.106:
	1.105:
	1.104:
	1.103:
	1.102:
	1.101:
	1.100:
	1.99:
	1.98:
	1.97:
	1.96:
	1.95:
	1.94:
	1.93:
	1.92:
	1.91:
	1.90:
	1.89:
	1.88:
	1.87:
	1.86:
	1.85:
	1.84:
	1.83:
	1.82:
	1.81:
	1.80:
	1.79:
	1.78:
	1.77:
	1.76:
	1.75:
	1.74:
	1.73:
	1.72:
	1.71:
	1.70:
	1.69:
	1.68:
	1.67:
	1.66:
	1.65:
	1.64:
	1.63:
	1.62:
	1.61:
	1.60:
	1.59:
	1.58:
	1.57:
	1.56:
	1.55:
	1.54:
	1.53:
	1.52:
	1.51:
	1.50:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.254:
	0.253:
	0.252:
	0.251:
	0.250:
	0.249:
	0.248:
	0.247:
	0.246:
	0.245:
	0.244:
	0.243:
	0.242:
	0.241:
	0.240:
	0.239:
	0.238:
	0.237:
	0.236:
	0.235:
	0.234:
	0.233:
	0.232:
	0.231:
	0.230:
	0.229:
	0.228:
	0.227:
	0.226:
	0.225:
	0.224:
	0.223:
	0.222:
	0.221:
	0.220:
	0.219:
	0.218:
	0.217:
	0.216:
	0.215:
	0.214:
	0.213:
	0.212:
	0.211:
	0.210:
	0.209:
	0.208:
	0.207:
	0.206:
	0.205:
	0.204:
	0.203:
	0.202:
	0.201:
	0.200:
	0.199:
	0.198:
	0.197:
	0.196:
	0.195:
	0.194:
	0.193:
	0.192:
	0.191:
	0.190:
	0.189:
	0.188:
	0.187:
	0.186:
	0.185:
	0.184:
	0.183:
	0.182:
	0.181:
	0.180:
	0.179:
	0.178:
	0.177:
	0.176:
	0.175:
	0.174:
	0.173:
	0.172:
	0.171:
	0.170:
	0.169:
	0.168:
	0.167:
	0.166:
	0.165:
	0.164:
	0.163:
	0.162:
	0.161:
	0.160:
	0.159:
	0.158:
	0.157:
	0.156:
	0.155:
	0.154:
	0.153:
	0.152:
	0.151:
	0.150:
	0.149:
	0.148:
	0.147:
	0.146:
	0.145:
	0.144:
	0.143:
	0.142:
	0.141:
	0.140:
	0.139:
	0.138:
	0.137:
	0.136:
	0.135:
	0.134:
	0.133:
	0.132:
	0.131:
	0.130:
	0.129:
	0.128:
	0.127:
	0.126:
	0.125:
	0.124:
	0.123:
	0.122:
	0.121:
	0.120:
	0.119:
	0.118:
	0.117:
	0.116:
	0.115:
	0.114:
	0.113:
	0.112:
	0.111:
	0.110:
	0.109:
	0.108:
	0.107:
	0.106:
	0.105:
	0.104:
	0.103:
	0.102:
	0.101:
	0.100:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

