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Who am I

• Software engineer @ Semgrep
• I work on our editor integrations
• I love working on programming languages, editors,

cryptography



What is Semgrep

• Semgrep’s core
product is a SAST
tool

• Can think of it as a
security linter

• Supports 30+
languages

• Lots of customers, all
using different IDEs

SAST
Static Application Security Testing

Demo

Product Purpose
Show security bugs as early as possible in the development cycle
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How do we show security bugs early?

In the editor!

Goals
• Provide a similar user experience to normal language checking
• Abstract away editing and language features for editors to one

code base
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What is the Language Server Protocol

Language Server Protocol (LSP) Defines all the ways an editor can
interact with a LS

Language Server (LS) Program that provides language tooling
(syntax errors, completion, refactoring etc.)

Language Client The development tool/editor etc. handles
documents, user interaction etc. (i.e. Emacs)
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Case study: Rust Analyzer

• Rust Analyzer: A language
server for the Rust language

• Rust takes a long time to
compile

• Rust Analyzer provides
feedback instantly

Provides the editor
• Compiler errors/warnings
• Potential fixes
• Completion
• Type signatures
• Auto imports
• View dependency graph
• Run code/tests
• Refactoring
• Much much more

TL;DR
Developing Rust with Rust Analyzer is a pleasure, and makes
dealing with advanced language features significantly easier
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Rust Analylzer in action



Why is this useful?

User perspective
• Same experience across editors
• Can easily setup and use LS’ made for other editors, if

developers don’t support a certain editor
• Performance is not dependent on editor
• Bug fixes, updates, etc. all come out at the same time

Developer perspective
• Adding new editors is quick and easy
• Only need one mental model
• Write tests for the LS, not for the editor
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So what about Emacs?

• Gets to benefit from work put into other editors

• Language tooling, the CPU intensive part of editors, can be
written in something else

• Lisp is fast, but not that fast
• lsp-mode, an LSP client, is commonly included in popular

Emacs distributions (Spacemacs, Doom Emacs, etc.)
• Emacs 29 includes eglot-mode built-in, a LSP client

• Lighter weight than lsp-mode

Some supported languages
C/C++/C#, Python, Rust, Type/Javascript, Dockerfile, Elixir, D,
Java, Haskell, Ruff, Semgrep, and more
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Brief communication overview

JSONRPC A JSON based remote procedure call protocol (think
http but JSON)
• A way for two programs to communicate
• Transport platform agnostic (can be stdin/out,

sockets etc.)

Request message that requires a response from the other party
Notification message that does not expect a response
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Example Request

{
"jsonrpc": "2.0",
"id" : 1,
"method": "textDocument/definition",
"params": {

"textDocument": {
"uri": "file:///p%3A/mseng/VSCode/Playgrounds/cpp/use.cpp"

},
"position": {

"line": 3,
"character": 12

}
}

}



Example Response

{
"jsonrpc": "2.0",
"id": 1,
"result": {

"uri": "file:///p%3A/mseng/VSCode/Playgrounds/cpp/provide.cpp",
"range": {

"start": {
"line": 0,
"character": 4

},
"end": {

"line": 0,
"character": 11

}
}

}
}



LSP Capabilities

• Almost all of the LSP is opt-in
• Server and client communicate on

what parts of the protocol they
both support

• Custom capabilities are possible too
- just define a custom JSONRPC
method

Some relevant
capabilities

• Open/Close file
• Diagnostics
• Code Actions
• Completion
• Other actions

• Hover
• Signature
• Symbols

Custom Capabilities
• Example: Rust Analyzer has “Structural Search and Replace”

request
• If you choose to go down this route, you must implement this

custom capability in every client
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Tips on writing a LS

• I wrote Semgrep’s in OCaml since our codebase was almost all
OCaml already

• Structure is similar to a REST server (i.e. a bunch of
independent endpoints)

• Would recommend Typescript or Rust depending on level of
performance desired

• Typescript has a lot of support, and documentation
• Rust is fast, but is going to take a lot more effort

• The hard part is not LSP, but the actual logic
• If you want to do analysis on code, you’ll need some sort of

parser, a way to get errors etc.
• If you’re adapting an existing language tool, this is much easier
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Supporting a LS through LSP mode in
Emacs

• How to write a client for a Language Server in Emacs
• There’s the official lsp-mode repository on Github w/ many

clients
• These are available to anyone who installs lsp-mode
• Alternatively, one can create a separate package altogether

(but we won’t focus on this)
• Steps:

1 A simple .el file that contains the logic
2 An entry into the list of clients
3 Documentation!



Create a client

;; lsp-mode/clients/lsp-<client-name>.el
;;
;; Use lsp-mode library
(require 'lsp-mode)

(lsp-register-client
(make-lsp-client
:new-connection (lsp-stdio-connection '("<server-executable>"))
:activation-fn (lsp-activate-on "<language-name>")
:server-id 'language-server-name))

(lsp-consistency-check 'language-server-name)
(provide 'lsp-client-name)



Add to list of client packages

;; lsp-mode/lsp-mode.el
;; a bunch of lisp
(defcustom lsp-client-packages

'(
;; A bunch of clients
lsp-client-name
;; more clients
)

"List of the clients to be automatically required."
:group 'lsp-mode
:type '(repeat symbol))

;; more lisp



Add to list of clients

// lsp-mode/docs/lsp-clients.json
{

// other clients...
"name": "client name",
"full-name": "full client name",
"server-name": "language-server-name",
"server-url": "<url>",
"installation": "<installation command>",
"debugger": "Yes or Not available"

}



Add documentation!

# lsp-mode/mkdocs.yml
# Documentation!
# Other client pages
- Client Name: page/lsp-<client-name>.md
# More client pages



Adding commands and custom capabilities

;; Custom notification
(defun client-notify-command (params)
"Documentation"
(interactive)
(lsp-notify "method" params))

;; Custom request
(defun client-request-command (params)
"Documentation"
(interactive)
(lsp-request-async "method" params

(lambda (result)
(do-thing result))))

;; Previous content of lsp-client-name.el



1 Introduction

2 LSP Overview

3 Emacs + LSP and the future

4 The Technical Part (LSP Deep Dive)

5 Supporting a LS through LSP mode in Emacs

6 Conclusion



Thanks for listening

Resources
• Semgrep: We’re hiring!
• LSP Specification
• lsp-mode + docs
• Rust Analyzer
• Long Video Tutorial

Q&A Time

https://semgrep.dev/
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/
https://github.com/emacs-lsp/lsp-mode
https://emacs-lsp.github.io/lsp-mode/page/adding-new-language/
https://rust-analyzer.github.io/
https://www.youtube.com/watch?v=E-NAM9U5JYE&list=PLEoMzSkcN8oNvsrtk_iZSb94krGRofFjN&index=1
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