
Emacs regex compilation
future directions for expressive pattern matching

Danny McClanahan

EmacsConf 2024

Danny McClanahan Emacs regex compilation EmacsConf 2024 1 / 50



Outline

1 Who are you? Why are you here?

2 What is a regular expression? When and how does implementation
match formal theory?

3 What are regexps used for? How do Emacs users use them?

4 What is the Emacs regex engine? How is it invoked?

5 How could we do regex better in Emacs? How could Emacs do regex
better than anywhere else?

6 Do you have any concrete examples? Or are you just posturing?

Danny McClanahan Emacs regex compilation EmacsConf 2024 2 / 50



Question

1 Who are you? Why are you here?

2 What is a regular expression? When and how does implementation
match formal theory?

3 What are regexps used for? How do Emacs users use them?

4 What is the Emacs regex engine? How is it invoked?

5 How could we do regex better in Emacs? How could Emacs do regex
better than anywhere else?

6 Do you have any concrete examples? Or are you just posturing?

Danny McClanahan Emacs regex compilation EmacsConf 2024 3 / 50



Answer

Who are you?
Danny McClanahan:

failed an independent study course in undergrad attempting to make a
C compiler because (as my prof specifically warned me against!) I got
stuck on the parser.
spent the next several years realizing that was actually what I should
have been doing the whole time.

Why are you here?
I have a lot of feelings about text and I’m making it everyone else’s
problem!

Danny McClanahan Emacs regex compilation EmacsConf 2024 4 / 50



I emacs-devel

spent a lot of time learning much of this from emacs-devel
was super confused about. . . a lot

thought this would be a matter of just updating the regex engine to
use modern techniques

. . . turns out the emacs regex engine has features that don’t exist in
other engines!1

then i learned about other larger goals for the regex engine!
. . . which happened to overlap a lot with my own research interests

1especially non-contiguous input, syntax-aware matching, and multibyte encoding
Danny McClanahan Emacs regex compilation EmacsConf 2024 5 / 50



Question

1 Who are you? Why are you here?

2 What is a regular expression? When and how does implementation
match formal theory?

3 What are regexps used for? How do Emacs users use them?

4 What is the Emacs regex engine? How is it invoked?

5 How could we do regex better in Emacs? How could Emacs do regex
better than anywhere else?

6 Do you have any concrete examples? Or are you just posturing?

Danny McClanahan Emacs regex compilation EmacsConf 2024 6 / 50



Answer2

What is a regular expression?
No one’s really sure!

When and how does implementation match formal theory?
Formal theory is mostly invoked to post-hoc justify design decisions instead
of expanding expressive power!

2This section is adapted from “The Four Eras of Regex” by Prof. Jamie Jennings at
NCSU: https://jamiejennings.com/posts/2021-09-23-dont-look-back-2/.

Danny McClanahan Emacs regex compilation EmacsConf 2024 7 / 50

https://jamiejennings.com/posts/2021-09-23-dont-look-back-2/


How did this happen?

Regex began as an investigation into theories of formal languages.

Many features were added on to implementations to improve the
practical user experience.

While the people adding these features were often academics, they
were still very interested in building practical tools!

This led to feature development beyond the range of formal theory
(awesome!).

However, this also means that functionality becomes poorly-specified
and implementation-defined.
Formal theory couldn’t keep up!

Danny McClanahan Emacs regex compilation EmacsConf 2024 8 / 50



The 1980s: Moonwalking and Backtracking

1983 Michael Jackson demonstrates the moonwalk in the music
video for "Billie Jean".

1986 Backtracking is developed to simulate egrep-style regular
expressions.

Danny McClanahan Emacs regex compilation EmacsConf 2024 9 / 50



Backtracking Away from Formal Theory

Backtracking ends up being a fantastic way to implement many more
features!

. . . but this is really where the break from formal theory begins.

Perl in particular adds a whole host of functionality!
. . . but this locks people into the specifics of perl as a language to
perform many text manipulation tasks.3

3Much bioinformatics code still uses perl!
Danny McClanahan Emacs regex compilation EmacsConf 2024 10 / 50



Conjecture

Formal theory remains largely
concerned with incremental
improvements to artificial benchmarks,
and much less with expanding models
to cover actual user needs.4

4This means they’re also much slower than they could be if they listen closely.
Danny McClanahan Emacs regex compilation EmacsConf 2024 11 / 50



Backtracking Away from Backtracking

By the 1990s, non-backtracking engines are created.

Extant ones include RE25, hyperscan6, and rust regex7.

These make use of the earlier automaton models with linear runtimes
for well-specified search tasks.

However, they intentionally do not cover anything beyond regular
linguistic complexity.

5See https://docs.rs/re2 for the only rust wrapper that will ever be blessed by its
maintainer.

6See https://docs.rs/vectorscan-async for the only rust wrapper that builds it
for you.

7Of which more will be said later.
Danny McClanahan Emacs regex compilation EmacsConf 2024 12 / 50

https://docs.rs/re2
https://docs.rs/vectorscan-async


Complexity Theory vs Complexity Practice

So what happens if you need to do more?

Danny McClanahan Emacs regex compilation EmacsConf 2024 13 / 50



Question

1 Who are you? Why are you here?

2 What is a regular expression? When and how does implementation
match formal theory?

3 What are regexps used for? How do Emacs users use them?

4 What is the Emacs regex engine? How is it invoked?

5 How could we do regex better in Emacs? How could Emacs do regex
better than anywhere else?

6 Do you have any concrete examples? Or are you just posturing?

Danny McClanahan Emacs regex compilation EmacsConf 2024 14 / 50



Answer

What are regexps used for?
All variety of text search and parsing tasks!

How do Emacs users use them?
As an auxiliary form of logic, to construct the user-level grammar for
human thought that Emacs provides: text as input and output.

Danny McClanahan Emacs regex compilation EmacsConf 2024 15 / 50



Why is Text Powerful?
[1: Text as I/O]

The reason text programming languages are successful is because text is
both input (readable) and output (writable).

This makes text an extremely empowering and accessible framework to
navigate and manipulate program code.

Danny McClanahan Emacs regex compilation EmacsConf 2024 16 / 50



Why is Text Powerful?
[2: Hidden Dependencies]

If you are unable to modify or deploy your code without employing an
opaque external system, then you have a hidden dependency.

This opaque external system can then exert arbitrary control over your
programming output.

Danny McClanahan Emacs regex compilation EmacsConf 2024 17 / 50



Why is Text Powerful?
[3: Locality]

If you cannot reproduce a system locally, it becomes an opaque external
system.

e.g. GUI IDEs, cloud services, Large Language Models8

8all Microsoft products
Danny McClanahan Emacs regex compilation EmacsConf 2024 18 / 50



Why is Text Powerful?
[4: What is Text?]

Text is local.

Danny McClanahan Emacs regex compilation EmacsConf 2024 19 / 50



Emacs Text

Emacs is a text editor which implements much of its own logic and
user interface via text.

This is why we have elisp, a language tightly integrated with text
operations from the editor.

Because text forms UI, parsing and text search can be employed not
just to edit code, but to construct a user interface from text input.

This means that language-level mechanisms for text such as the regex
engine can be extended into the user interface.

Danny McClanahan Emacs regex compilation EmacsConf 2024 20 / 50



Who Says Text is Empowering?
[1: You’re Not Smart Enough]

Not everyone thinks text is empowering!
Formal theory thinks nobody should be allowed to parse text without
their tools!

Danny McClanahan Emacs regex compilation EmacsConf 2024 21 / 50



Who Says Text is Empowering?
[2: Don’t Parse HTML with Regex]

"Everyone knows" not to parse HTML with regex, because regex (alone!)
isn’t sufficiently powerful to parse HTML. But:

1 Nobody is parsing HTML with a single massive regex!
2 Regex + mutable state can achieve arbitrary linguistic complexity!
3 Regex search for a specific substring is much faster than parsing

everything up front!

Danny McClanahan Emacs regex compilation EmacsConf 2024 22 / 50



Who Says Text is Empowering?
[3: C Lexer Hack]

Turns out those tools aren’t too powerful, they’re actually not powerful
enough for practical inputs!

This is why I got stuck on the parser in that independent study course!

Danny McClanahan Emacs regex compilation EmacsConf 2024 23 / 50



Emacs Says So!

This isn’t remotely a concern for Emacs code, which regularly uses regexps
to parse HTML and other programming languages! How?

text properties write state to the text itself9

syntax parsing regex engine is aware of this via syntax classes10

jit-lock-mode use smart heuristics to only reparse what’s changed11

9Not unlike the tape of a turing machine!
10\b, \<, etc.: see https://www.gnu.org/software/emacs/manual/html_node/

elisp/Regexp-Backslash.html.
11This might just be fontification, as opposed to the work done in syntax-ppss.

Danny McClanahan Emacs regex compilation EmacsConf 2024 24 / 50

https://www.gnu.org/software/emacs/manual/html_node/elisp/Regexp-Backslash.html
https://www.gnu.org/software/emacs/manual/html_node/elisp/Regexp-Backslash.html


Formal Theory: Right for the Wrong Reasons

There are actually reasons to avoid using regexps to parse text!

Regexps may have extremely non-obvious dependencies on parse
context.

A non-greedy match may be correct when invoked in a restricted
context, but may become subtly incorrect when used more generally.12

While text properties and buffer-local variables can retain the state
necessary to parse non-regular languages, coordinating that state can
be error-prone.

Since there are no existing formalisms to link regex with external
state13, it can become extremely difficult to reproduce the precise
internal state which generates a logic bug in an elisp mode.

12For example, (_<.*?): could match a symbol before a : (like a: in JavaScript),
but could unintentionally match string properties like "a:b": as a: too!

13Composing automata with other parse state is one of the subjects of my research.
Danny McClanahan Emacs regex compilation EmacsConf 2024 25 / 50



tree-sitter

In fact, tree-sitter (since Emacs 29) was created to solve this problem
for well-specified language definitions.

It is a highly constraining formal tool!

And it means you now depend on:
The tree-sitter grammar for your language.14

The tree-sitter library.15

So I don’t like it!
But for the specific task of parsing a programming language, it
happens to solve a lot of other problems at once.

14obnoxious to read and write
15does not have universal uptake within distros

Danny McClanahan Emacs regex compilation EmacsConf 2024 26 / 50



So Why Use Regex?

So why are we talking about regex here? Mainly:

Parsing programming languages is a very small subset of all text
search/matching tasks!
Regex can be directly manipulated by the user!

Danny McClanahan Emacs regex compilation EmacsConf 2024 27 / 50



Regex as I/O

For the interactive experiences that Emacs excels at, regex provides a
powerful language for both input and output:

It can be synthesized hygienically from elisp code via rx, either
statically at load time or dynamically at run time!
It can be received or transformed from user input to specify powerful
queries over complex data!16

16See helm-rg and telepathygrams at end.
Danny McClanahan Emacs regex compilation EmacsConf 2024 28 / 50



We Can Go Further. . .

. . . but this might require going beyond "regex" alone!

Danny McClanahan Emacs regex compilation EmacsConf 2024 29 / 50



Question

1 Who are you? Why are you here?

2 What is a regular expression? When and how does implementation
match formal theory?

3 What are regexps used for? How do Emacs users use them?

4 What is the Emacs regex engine? How is it invoked?

5 How could we do regex better in Emacs? How could Emacs do regex
better than anywhere else?

6 Do you have any concrete examples? Or are you just posturing?

Danny McClanahan Emacs regex compilation EmacsConf 2024 30 / 50



Answer17

What is the Emacs regex engine?
It’s a backtracking engine over multibyte codepoints, defined in
src/regex-emacs.c.

How is it invoked?
In two ways:

over a single contiguous string input,
over the two halves of the gap buffer.

17This section is an unfortunately brief walkthrough through the current regex logic.
Danny McClanahan Emacs regex compilation EmacsConf 2024 31 / 50



regex-emacs
[1: Data Layout]

The compiled pattern is stored as an re_pattern_buffer struct from
src/regex-emacs.h.

In particular, unsigned char *buffer holds the instructions!
Case folding uses the char table in Lisp_Object translate.

Danny McClanahan Emacs regex compilation EmacsConf 2024 32 / 50



regex-emacs
[2: Match Loop]

The matching loop in re_match_2_internal() in src/regex-emacs.c
goes vaguely as follows:

1 extract current and next char
perform multibyte varint decoding to iterate bytes
translate input characters via the translate case-folding char-table

2 read instruction from instruction pointer
3 big switch statement for the next instruction

if instruction uses syntax, read the syntax class18 for the current
character from the current syntax table

4 increment the instruction pointer19

5 if we’ve concluded a capture, write the end position to the C-level
array re_nsub

18https://www.gnu.org/software/emacs/manual/html_node/elisp/
Syntax-Class-Table.html

19unless instruction was a jump
Danny McClanahan Emacs regex compilation EmacsConf 2024 33 / 50

https://www.gnu.org/software/emacs/manual/html_node/elisp/Syntax-Class-Table.html
https://www.gnu.org/software/emacs/manual/html_node/elisp/Syntax-Class-Table.html


Non-Contiguous Matching

Non-contiguous matching over the two halves of the gap buffer is
supported by checking at each point whether we have progressed to the
end of the first half, and then switching over to the second half.

This allows the same code to be used for single-string search, as it
simply avoids checking a NULL second pointer and only checks if
we’ve reached the end of the first input.

Danny McClanahan Emacs regex compilation EmacsConf 2024 34 / 50



Multibyte

It turns out this actually isn’t terribly relevant to the regex engine!
Or at least, it doesn’t really differ from "standard"20 Unicode regex
matching.

Emacs reads in data from whatever encoding into multibyte,21 and the
regex engine only acts upon this normalized encoding.

20There is no (real) standard (yet):
https://jamiejennings.com/posts/2021-09-07-dont-look-back-1/.

21See https://www.gnu.org/software/emacs/manual/html_node/elisp/
Text-Representations.html.

Danny McClanahan Emacs regex compilation EmacsConf 2024 35 / 50

https://jamiejennings.com/posts/2021-09-07-dont-look-back-1/
https://www.gnu.org/software/emacs/manual/html_node/elisp/Text-Representations.html
https://www.gnu.org/software/emacs/manual/html_node/elisp/Text-Representations.html


Is that all?

How much time22 do you have?

22and space
Danny McClanahan Emacs regex compilation EmacsConf 2024 36 / 50



Question

1 Who are you? Why are you here?

2 What is a regular expression? When and how does implementation
match formal theory?

3 What are regexps used for? How do Emacs users use them?

4 What is the Emacs regex engine? How is it invoked?

5 How could we do regex better in Emacs? How could Emacs do regex
better than anywhere else?

6 Do you have any concrete examples? Or are you just posturing?

Danny McClanahan Emacs regex compilation EmacsConf 2024 37 / 50



Answer23

How could we do regex better in Emacs?
introspection
optimization

How could Emacs do regex better than anywhere else?
explicit control over linguistic complexity
libraries of composeable patterns

23This section will describe several potential paths we might investigate, paraphrasing
discussion from emacs-devel .

Danny McClanahan Emacs regex compilation EmacsConf 2024 38 / 50



Separately-Compiled Regexps
Precompile regexps to enable more powerful compilation techniques.

Problem Emacs currently uses a fixed-size global compile cache.
Solution Create native elisp objects for regexps and match data.24

Use (make-regexp "...") to explicitly compile a
pattern string.
All supported25 methods in search.c can accept either
a compiled regexp or bare string.

24I have demonstrated this in a test branch:
https://github.com/cosmicexplorer/emacs/tree/lisp-level-regex.

25Literal search methods do not use the regex engine.
Danny McClanahan Emacs regex compilation EmacsConf 2024 39 / 50

https://github.com/cosmicexplorer/emacs/tree/lisp-level-regex


Separately-Compiled Regexps
Precompile regexps to enable more powerful compilation techniques.

Results Artificial benchmarks26 show an improvement!27

. . . but I haven’t been able to produce an
apples-to-apples comparison yet.
Syntax highlighting would be the most appropriate, but
caching these compiles currently breaks fontification.28

26Using test/manual/perf.el.
27Using the native match data object produces no improvement over consing a list.
28Current guess is that it relies on buffer-local state not available when precompiled.

Danny McClanahan Emacs regex compilation EmacsConf 2024 40 / 50



Match Over Bytes, not Chars
Compile patterns to byte-level automata, then iterate over bytes.

Problem Char-by-char varint decoding of multibyte29 is comparatively
slow.

This is the reason go’s "RE2" is much much slower than
the C++ RE2 library.30

Solution We can do this work at compile time instead!31

Generates a larger automaton in order to be able to
think in terms of byte ranges.32

29No worse than UTF-8 in general, but we may be able to pipeline decoding somehow.
30Source: a very dear friend.
31This is already what we do for e.g. char-folding.
32This is a necessary prerequisite for SIMD instructions.

Danny McClanahan Emacs regex compilation EmacsConf 2024 41 / 50



Explicit Control over Linguistic Complexity
Break apart the monolithic regex pattern interface into subroutines for specific inputs.

Problem[1] There’s no way to validate that a given pattern isn’t more
complex than expected.

This requires careful escaping to avoid accidentally
triggering regex behavior.

Problem[2] There’s no way to ensure Emacs uses faster algorithms33 for
less complex patterns.34

This results in difficult-to-understand performance
characteristics.

Problem[3] There’s no way to specify different search semantics.35

Instead, we have a single type of input and a single type
of output.

33See https://github.com/BurntSushi/rebar for a fantastic discussion of
techniques for regex performance.

34We perform a heuristic check for literal patterns, but only in some code paths.
35Such as allowing false positives, or matching against a set of patterns.

Danny McClanahan Emacs regex compilation EmacsConf 2024 42 / 50

https://github.com/BurntSushi/rebar


Explicit Control over Linguistic Complexity
Break apart the monolithic regex pattern interface into subroutines for specific inputs.

Solution[1] Single or multiple literals36 can employ specialized SIMD
algorithms to avoid reading every single byte one by one.37

Solution[2] Non-capturing patterns or patterns without backrefs38 can
use faster automata.

Solution[3] Collecting a sequence of matches for the same pattern can be
done all at once.39

Solution[4] Matching against a set of patterns can be done more
efficiently and ergonomically than combining with \|.

36Multiple literals is especially helpful for matching a set of keywords.
37This is used as a "prefilter" optimization in modern engines like RE2 to avoid

reading each byte one-by-one.
38These have recently been formalized:

https://jamiejennings.com/posts/2023-10-01-dont-look-back-3/.
39Overlapping matches can be supported for ambiguous cases, instead of choosing

longest or shortest only.
Danny McClanahan Emacs regex compilation EmacsConf 2024 43 / 50

https://jamiejennings.com/posts/2023-10-01-dont-look-back-3/


Lisp Regexp Library
Expose a lisp-level library for regexp matching.

Problem The compiled form of the regexp in re_pattern_buffer can
be executed, but not really introspected.

No form of "IR": this also contributes to the difficulty of
composing patterns together.

Solution40 We have libgccjit now: why not implement the regex
engine itself in lisp?41

Results (postulated):
Integration into pcase could achieve a form of type
safety along with interleaving lisp-level matching logic.
Biggest issue for optimization: lisp code (or native
modules) can’t access or operate on the separate halves
of the gap buffer.

40Proposed by Pip Cet on emacs-devel.
41Alternatively, translate the regexp into lisp which we can then JIT.

Danny McClanahan Emacs regex compilation EmacsConf 2024 44 / 50



Question

1 Who are you? Why are you here?

2 What is a regular expression? When and how does implementation
match formal theory?

3 What are regexps used for? How do Emacs users use them?

4 What is the Emacs regex engine? How is it invoked?

5 How could we do regex better in Emacs? How could Emacs do regex
better than anywhere else?

6 Do you have any concrete examples? Or are you just posturing?

Danny McClanahan Emacs regex compilation EmacsConf 2024 45 / 50



Answer

Do you have any concrete examples?
Yes!

Or are you just posturing?
My posture is terrible!42

42Other translations have also been suggested by modern scholars, including
formidable, as well as awe-inspiring.

Danny McClanahan Emacs regex compilation EmacsConf 2024 46 / 50



helm-rg43

A code search tool similar to M-x grep, using ripgrep44.

Generates regexps from input:
"a b" => "a.*b|b.*a".
Translates from PCRE to elisp
regexps to highlight matches
in the helm buffer.

M-b enters "bounce mode",
where matched lines can be
edited directly.

Example (pattern generation)

43https://github.com/cosmicexplorer/helm-rg
44https://blog.burntsushi.net/ripgrep/

Danny McClanahan Emacs regex compilation EmacsConf 2024 47 / 50

https://github.com/cosmicexplorer/helm-rg
https://blog.burntsushi.net/ripgrep/


telepathygrams48

A (WIP) code search tool that precompiles a database to execute NFAs against.

I want to beat ripgrep by "cheating"45 with a precompiled index.46

n-gram indices have been done,47 but I don’t want to just find where
to start–I want to execute the entire search against the index!
This requires virtualizing NFA state so that it may be distributed:
across time in parallel / across machines,

& space in terms of offsets vs directly against the input data.
This may fail, but it will be fun!

45There are other ways to cheat here too, like precompiling known queries.
46Inspired by etags, but with a more complex index for more general queries.
47e.g. Kythe: https://kythe.io/docs/kythe-overview.html
48https://github.com/cosmicexplorer/telepathygrams

Danny McClanahan Emacs regex compilation EmacsConf 2024 48 / 50

https://kythe.io/docs/kythe-overview.html
https://github.com/cosmicexplorer/telepathygrams


RIP @junyer49

Paul Wankadia taught me everything.

49https://github.com/google/re2/issues/502
Danny McClanahan Emacs regex compilation EmacsConf 2024 49 / 50

https://github.com/google/re2/issues/502


(point-max)
call me beep me if you wanna reach me50

text-mode
fedi @hipsterelectron@circumstances.runa

IRC @cosmicexplorer in #emacsconfb on irc.libera.chat

email dmc2@hypnicjerk.aic

aalso (sporadically) twitter & bluesky
balso (sporadically) elsewhere
calso dmcC2@ (still deciding which poetic license to use)

prog-mode
codeberg @cosmicexplorer

github @cosmicexplorer

50or hire me
Danny McClanahan Emacs regex compilation EmacsConf 2024 50 / 50

https://circumstances.run/@hipsterelectron
mailto:dmc2@hypnicjerk.ai
https://twitter.com/hipsterelectron
https://bsky.app/profile/hipsterelectron.bsky.social
https://codeberg.org/cosmicexplorer
https://github.com/cosmicexplorer

	Who are you? Why are you here?
	What is a regular expression? When and how does implementation match formal theory?
	What are regexps used for? How do Emacs users use them?
	What is the Emacs regex engine? How is it invoked?
	How could we do regex better in Emacs? How could Emacs do regex better than anywhere else?
	Do you have any concrete examples? Or are you just posturing?

